Research Challenges in Forecasting Technical Emergence

Dewey Murdick, IARPA
25 September 2013
“Invests in high-risk/high-payoff research programs that have the potential to provide our nation with an overwhelming intelligence advantage over our future adversaries”

http://www.iarpa.gov/
A Few Interesting Research Problems

• Scan for technical emergence
 – Move beyond search
 – Reliably query for indicative “patterns of technical emergence” without starting with a known, named subject

• Analyze diverse and large data streams across disciplines, cultures, and languages
 – Support strategic investment
 – Facilitate discovery and innovation

• Forecast scientific, technical, application, and market events
 – Quantitatively event forecasts
 – Improve accuracy and early event detection
Foresight and Understanding from Scientific Exposition (FUSE) Program

Reduce “technical surprise” via reliable & validated, early detection of emerging scientific and technical capabilities across disciplines and languages found within the full-text content of scientific, technical, and patent literature

Special focus from the outset on multiple languages, Phase 2 focus on English and Chinese

Novelty → Discover patterns of emergence and connections between technical concepts at a speed, scale, and comprehensiveness that exceeds human capacity

Usage → Alert analyst of emerging technical areas with sufficient explanatory evidence to support further exploration
What is technical emergence?

Hypotheses from Phase 1

- A concept has emerged if it has been accepted by others within and beyond one’s community. ~Columbia

- A concept is emerging when its “actant network” is increasing in robustness. ~BAE

- A concept has emerged when evidence has appeared that the concept is new and unexpected, noticeable and growing. ~Raytheon BBN

- A concept is emerging when it is identifiable by its own practitioners, enables a capability that was not achievable previously, and persists. ~SRI
Red edges – connect data sources to data fields
Blue edges – connect BAE high-level indicators to BAE low-level indicators
Line thickness between features and indicators, measures significance for the challenge
Evaluation Attempt #1: Case Studies

• Drawn from diverse areas of scientific inquiry & application:
 – Biological Sciences / Biotechnology
 – Computer Science / Information Science; Engineering
 – Mathematics / Statistics
 – Physical Sciences; Earth Science
 – Medical / Clinical / Infectious Disease / Health Services;
 – Social Sciences; …

• Technical emergence measured from “real world” viewpoint, but connected to literature

• Multiple case studies to be produced; some are held back for evaluation
 – Case studies are representative but not comprehensive
 – Insufficient to train technical emergence classifiers
 – Limited examples of emergence & non-emergence (10s planned)
 – Reference baseline has limited temporal resolution (~5 year blocks)
Phase 2 Evaluation: Nomination Test

LEADING

Data Period

Reference Period

Forecast Period

FUSE Document Repository

Test Sample

e₁, e₅, e₃, e₂, e₄, e₅

Performer-defined indicators

Prominence Forecasts

FUSE Performer System

GTF*(E,D,R,F)

(E)ntity

(D)ata Period

(R)efERENCE Period

(F)orecast Period

T&E

Ground Truth Data

Compare

NQ Score

*GTF = Ground Truth Function
Indicator Development and Testing Underway

Regular analysis and evaluation of each team’s features (e.g., scientific noun phrases, topic models) and their portfolio of indicators (i.e., quantitatively measured aspects / patterns of technical emergence)

Promising Midterm Indicator Types

- Citation, Author Networks (All)
- Topic Diversity (SRI)
- Citation Context and Sentiment (SRI)
- Technology and application concept type evolution (SRI)
- Patent classification dynamics (SRI, BAE)
- Emerging cluster / hot patent status (BAE)
- Patent originality (BAE)
- Corporate, Academic patent authorship (BAE)
- Topic modeling across time, thread dynamics (BBN)
- Research levels (BBN)
- Time series analysis, extensive portfolio (COL)
- Temporal pattern classification, time-series clustering (COL)

Fundamental Research

- Argumentative Zoning (SRI, COL)
- Time-dependent term co-occurrence (SRI)
- Author-topic modeling (SRI)
- Operations on annotated graphs, e.g., scientific concepts, terms (SRI)
- Chinese patent indicators (BAE, BBN)
- Fine-grained topic models (BBN)
- Causality modeling framework (BBN)
- Primary concept mentions (COL)
- Citation sentiment (COL)
Now Developing a Market for Scientific and Technical Forecasting

- **Goal:** Generate precise, testable forecasts for S&CT developments
- **Approach:** Build world’s largest prediction market for S&T events
 - Thousands of subject matter experts in dozens of countries will make nuanced conditional forecasts for around one thousand S&T events
 - Data-driven (i.e., scientific and patent literatures) indicators will be used to generate questions and adjust forecasts
- **Evaluation:** Forecasts will be scored against actual events, as they occur
- **Potential impact:** Dramatically improve S&T foresight with actionable information
- **Schedule:** June 2013–June 2015

By 31 December 2014, how much of the visible spectrum will a metamaterial be able to deflect?

- Probabilities assigned to event in each period
- Number of forecasters providing judgments in each period

Real-world timeline (months)
Teams will Generate Questions

• What is the probability of a 10cm carbon nanotube being fabricated before 31 Dec 2014?
• Will the number of accepted articles for the 2015 International Conference on Machine Learning (ICML) conference that contain the term ‘deep learning’ in the title/abstract exceed those that contain the term ‘support vector machine(s)’ in the title/abstract?
• How many unique assignees will have at least two USPTO patent applications published using the term ‘Type III Secretion System’ in its title/abstract/background/claims between 1 Oct 2013 and 30 Sep 2014?
• By 31 Dec 2017, how many FDA-approved products will be based on RNA interference?
• Will there be reported shortages of technetium-99m in the US in 2015?
Discussion & Questions

Dewey Murdick, Ph.D.
Program Manager, IARPA
dewey.murdick@iarpa.gov