

4th Annual Global Tech Mining Conference

2014.09.02 • Leiden, Netherlands

Integrated Methodology for Finding Emerging Technologies Using Publications, Patents and Roadmaps

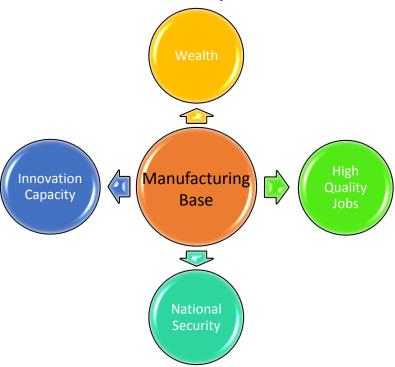
Presented by Alan L. Porter

Authored by Geet Lahoti, Alan L. Porter, Jan Youtie, Ben Wang, Chuck Zhang, Diana M. Hicks

Outline

1. Motivation

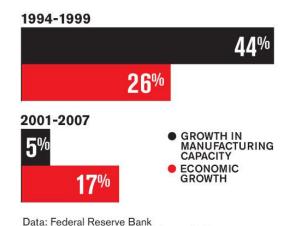
2. Objective


3. Proposed Approach

4. Illustrative Case

5. Conclusion

Motivation


 Developing a strong manufacturing base in the U.S. is a national imperative.

Since the past decade, this important component of the U.S. economy is struggling!

AMERICA'S WANING INDUSTRIAL BASE

In periods of economic growth, U.S. companies boost manufacturing capacity. But that didn't happen the last time around.

Analysis by BusinessWeek's James C. Cooper

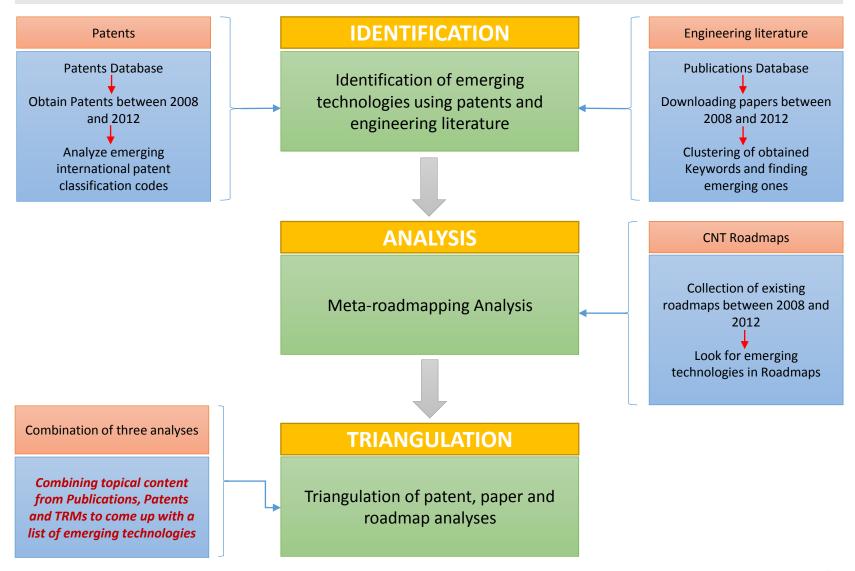
Countermeasure –

- In June 2011, the White House launched the Advanced Manufacturing Partnership (AMP) with the goals of:
 - Strengthening U.S. Manufacturing competitiveness
 - Creating high-paying jobs

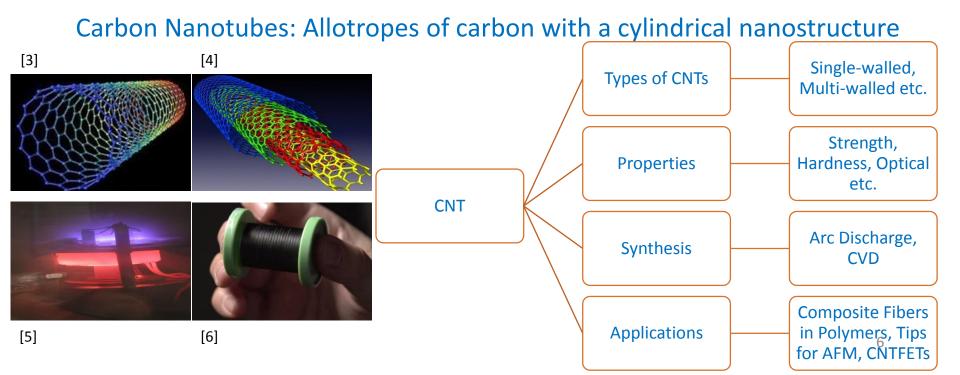
Objective

President's Council of Advisors on Science and Technology (PCAST) 2012 report [2] recommends:

<u>"Identify a 'starter list' of cross-cutting technologies that are vital to Advanced Manufacturing"</u>


PCAST 2012 [2] report also reveals the need for <u>"a systematic and credible methodology to identify priority technologies for investment in Advanced Manufacturing R&D"</u>

Objective of the ongoing study:


- Develop an approach to identify a list of technologies
 - That are "emerging"
 - That are ripe for "production scale up"
 - That have "transformative potential"

In this work, we present a list of technologies that are "emerging" and have large volume applications.

Proposed Approach

- As we mentioned in motivation, the need is to find emerging technologies for the broad domain of advanced manufacturing (AM).
- But, in order to show the functioning of our proposed approach, we just consider Carbon Nanotubes (CNTs) as a illustrative case.
- We hope that the proposed approach can be extended to broader domains (like AM) using "Big Data" analytical techniques.

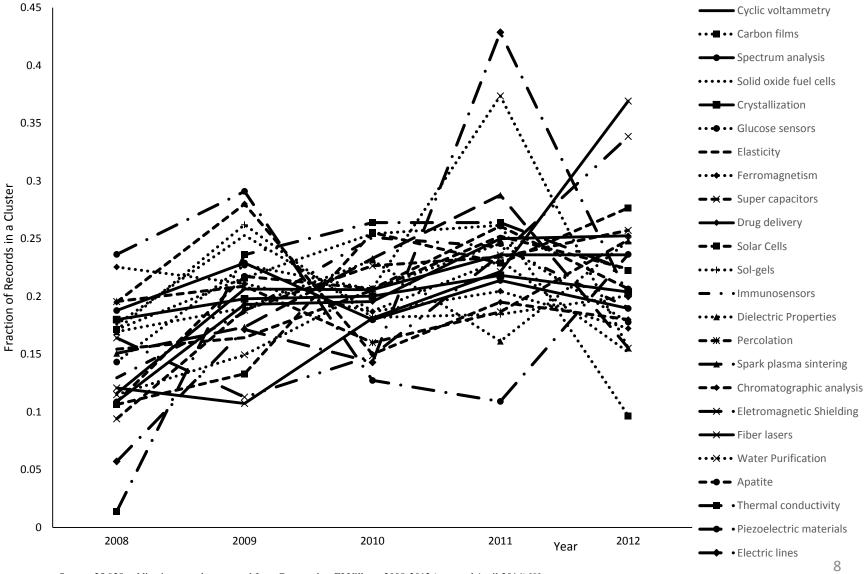
Step 1 Identification Phase: Publications Analysis

VantagePoint

(Text Mining

Tool; NLP) [7]

- 1) Consider a time range: **2008 to 2012**
- 2) Search for **CNT research papers** in a database such as **Compendex**
- 3) **25,928 publications!** (4000 in a single search; 500 in a single download)
- 4) Download detailed records (Title, Abstract, Class Codes etc.)


- 1) Title and its phrases2) Keywords (controlled, main
 - heading, uncontrolled)
 - 3) Compendex Class Codes
 - 4) Publication Year
 - 5) Phrases from Abstract
 - 6) Author, Affiliation, Number of references, Journal etc.

- 1) Analyze the clusters
- 2) Find out the emerging ones

- 1) Consider **Keywords** (Controlled)
- 2) Perform Clustering of Keywords using ClusterSuite[8] in Vantage Point

7

Emerging Clusters

Emerging Clusters

- We classify Clusters in three categories: CNT Manufacturing/Processing, CNT Characterization, CNT Application.
- This gives us a clear picture about the focus areas of theoretical research during 2008-2012.

CNT							
Fabrication/Processing	Characterization	Applications					
Spark Plasma Sintering	Electrochemical Properties (Cyclic Voltammetry)	Films (Transparent and Plastics Electronics, Damping Applications)					
Chromatography	Optical Properties (Spectroscopy)	Solid Oxide Fuel Cells					
	Elasticity (Equations of motion, Continuum Mecha	anics) Crystallization (Polymer)					
Dielectric Properties :		Glucose Sensors					
		Supercapacitors (Power Source and Electronic Products)					
		Drug Delivery					
	Thermal Conductivity	Solar Cells (Photovoltaics)					
		Electrochemical Devices (Composite: CNT + Sol Gel)					
		Immuno-sensors					
		Electromagnetic Shielding					
	The content of this category just implies	Fibre Lasers On the other hand,					
	that researchers have put in efforts to	Water Purification this clearly depicts					
	improve these CNT properties	Apatite application areas					
		Piezoelectric Materials					
		Electric Lines					

Step 1 Identification Phase: Patents Analysis

VantagePoint

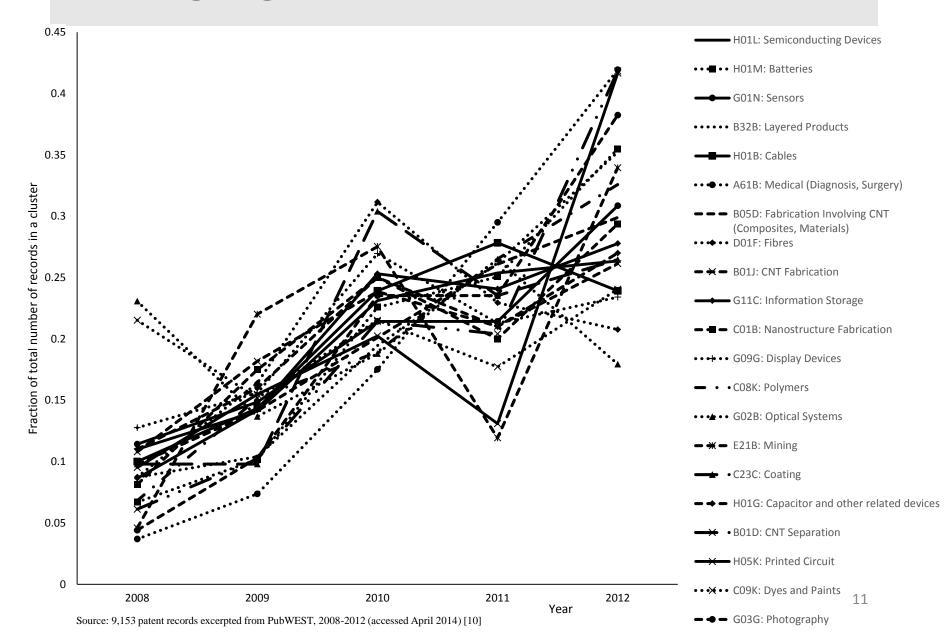
(Text Mining

Tool; NLP) [11]

- 1) Consider a time range: **2008 to 2012**
- 2) Search for CNT patents in a database such as (USPTO;PubWEST)
- 3) **9,153 Records**!

(All in a single search; 1000 in a single download)

4) Download detailed records (Title, Inventors etc.)


- 1) Title and its phrases
- 2) IPC (International Patent Classification) codes
- 3) Publication Year
- 4) Inventor Details
- 5) Examiner etc.

- 1) Analyze the trend in IPC codes
- 2) Find out the emerging ones

- 1) Consider IPC codes
- 2) Rename them based on the type of the records that they contain

10

Emerging IPC codes

Emerging IPC codes

- Here, we could classify IPC codes in only two categories: CNT Manufacturing/Processing, CNT Application.
- We can clearly see the innovation areas wherein CNTs are finding tremendous application during 2008-2012.

	CNT					
	Fabrication/Processing		Applications			
	B05D: Fabrication Involving CNT (Composites, Materials)		H01L: Semiconducting Devices			
	B01J: CNT Fabrication	on	H01M: Batteries			
	C01B: Nanostructur	e Fabrication	G01N: Sensors			
	B01D: CNT Separati	on	B32B: Layered Products			
			H01B: Cables			
			A61B: Medical (Diagnosis, Surgery)			
	The content of this regory doesn't give us relation.		D01F: Fibres	On the oth	On the other hand	
			G11C: Information Storage	this clearly	this clearly depic	
			G09G: Display Devices	application	application field	
			C08K: Polymers			
			G02B: Optical Systems			
			E21B: Mining			
			C23C: Coating			
			H01G: Capacitor and other related devices			
			H05K: Printed Circuit		12	

Step 2 Analysis Phase: Technology Roadmaps Analysis

- Consider a time range of 2008-2012
- Search internet for all those TRMs wherein there is a mention of CNT
- 13 TRMs obtained

- Read each one of those TRMs
- Look for mentioning of "Emerging Technologies" associated with CNTs

- Form a list

Roadmaps considered for Analysis

- 1. Growth of Nanotubes for Electronics
- 2. International Technology Roadmap for Semiconductors, 2008
- 3. International Technology Roadmap for Semiconductors, 2009
- 4. International Technology Roadmap for Semiconductors, 2010
- 5. International Technology Roadmap for Semiconductors, 2011
- 6. Carbon Nanotubes and Graphene for Electronics Applications 2010-2020
- 7. NASA Nanotechnology Roadmap
- 8. Technology Roadmap For The Canadian Textile Industry
- 9. Nanoelectronics Technology Roadmap for Malaysia
- 10. National MEMS Technology Roadmap
- 11. Naval Power Systems: Technology Development Roadmap
- 12. A Roadmap for Graphene
- 13. Productive Nanosystems: A Technology Roadmap

These are the roadmaps found online and they mention about CNT and related fields. So we consider them for our purpose.

Technologies from Technology Roadmaps (TRMs)

- TRM identify emerging technologies and their development.
- We read the TRMs and find out the key technologies related to CNTs.
- These technologies are forecasted to be gaining importance over the next 5-15 years

CNT	Key Technologies Obtained from TRMs		
Application	Semiconductors, Transistors, Super/Ultra-Capacitors, Actuators, Electromagnetic Shields, Charge Transport, Transparent Electrodes, Spectrometer, Nanosprings, Molecular Bearings, Batteries, Coatings, Memory, Emission Display		
Fabrication	Chemical Vapor Deposition		
Property of Interest	Electrical/Thermal Conductivity, Ultra/Low density, Reliability, Low Power, Light weight, Damage Tolerance		
Field of Interest	Electronics, Automotive, Sporting Goods, Photonics		

This set of technologies is useful in two ways:

- It helps in validating our results obtained from Publications and Patents Analyses (to a certain extent).
- 2. If we miss any important technology in the previous steps, we may expect them to appear in this list.

Step 3 Triangulation

- This is the most important step. Having found the "emerging" technologies in the two previous steps, now we pick those ones that have the potential for large volume applications to fulfil our objective.
- Based on the CNT expertise of our research group, we make an attempt to triangulate the aforementioned results of Step 1 (*Emerging Theoretical Research & Innovation areas*) and Step 2 (*To-be-Emerging Areas*). It appears that -

Fuel cells,

Batteries,

Medical Devices,

Sensors,

Optical Devices,

Display Devices,

Films,

Electric Cables,

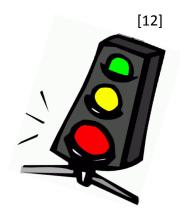
Super-capacitors

and Composites

are the major emerging technology areas wherein CNTs will have large volume applications.

[11]

keywords


16

Summary

- List of emerging technologies Setting up the foundation for spotting transformative and crosscutting technologies
- Useful for policy makers, strategists, technologists
- Amalgamation of patents, publications and roadmaps analyses – (Quantitative + Qualitative)

Additional Last Step – Experts' Opinion

Can the triangulation step be more robust?

References

- 1. America's Waning Industrial Base http://www.scdigest.com/assets/newsviews/09-09-18-2.php?cid=2751&ctype=content
- PCAST (2012). Capturing Domestic Competitive Advantage in Advanced Manufacturing: AMP Steering Committee Report. Washington DC: President's Council of Advisors on Science and Technology.
- 3. SWCNT http://www.azonano.com/article.aspx?ArticleID=3029
- 4. MWCNT http://www.turbosquid.com/3d-models/multiwalled-carbon-nanotube-3ds/363229
- 5. CNT http://en.wikipedia.org/wiki/Carbon nanotube#Chemical vapor deposition .28CVD.29
- 6. CNT Spool of Wire http://news.discovery.com/tech/robotics/carbon-nanotubes-spunspools-wires-130111.htm
- 7. VantagePoint, https://www.thevantagepoint.com/ (accessed May, 2014).
- 8. O'Brien, J.J., Carley, S., & Porter, A.L. (2013). ClusterSuite [computer software]. Atlanta, GA.
- 9. http://www.engineeringvillage.com/
- 10. https://library.gatech.edu/
- 11. Keywords http://www.siliconcloud.com/Portals/55887/images/google%20keywords.jpg
- 12. Traffic Signal http://www.clipartbest.com/clipart-niXarM5iB

Thank You!

Questions??