IDENTIFYING THE TECHNOLOGY PROFILES OF R&D PERFORMING FIRMS – A MATCHING OF R&D AND PATENT DATA

Peter Neuhäusler, Rainer Frietsch, Carolin Michels, Verena Eckl

4th Global Tech Mining Conference

September 9th, 2014

From industries to technologies – The motives of the research project

- R&D expenditures of companies are reported by industries/sectors (NACE) and cannot be provided at the level of technology fields.
 - Numerous other indicators are only available at the level of technology fields (e.g. support or funding programs or patents).

Problems

- Companies themselves can rarely provide information on expenditures by technology fields.
- Large enterprises often are technologically heterogeneous → we do not know how much R&D is spent for certain kinds of technologies.

But...

- ...micro data (company level) on R&D expenditures including a sector allocation
- and micro data (applicant level) on patent filings including a technology field information are available.
- Both micro databases can be merged in order to identify R&D expenditures by technology fields and patents by sectors.

Schematic representation of the research output

The data matching – a brief overview

Aim

- Find information on patent applicants in PATSTAT that match (or are similar to) a company name in the R&D database and link the information from both databases.
- R&D data by companies is provided by the R&D survey of the Stifterverband für die Deutsche Wissenschaft, 2007 and 2009)

Approach

Calculate the similarity of company entries from the R&D database to all applicants' names in PATSTAT (2005-2009). A certain degree of similarity determines the selection of the respective pair of R&D and PATSTAT entries as a "match".

The matching procedure – Three steps

Cleaning the data

Cleanup of different spelling variations: lowercase letters, special characters, spaces, removal of legal form of companies etc.

Similarity calculation

- Levenshtein-Distance: minimum number of edits to align two text strings.
- In case the first three digits of the ZIP code (if available) do not match: similarity is set to 0.

Selection of the matched entries

If the similarity of two text strings is higher than a predetermined threshold value, this is interpreted as a "match". The threshold is determined by Recall and Precision using a manually matched random dataset (N=1,000) as gold-standard.

Selection of the threshold value

Source: R&D survey of the Stifterverband für die Deutsche Wissenschaft, 2007 and 2009, EPO – PATSTAT, calculations by Fraunhofer ISI.

F-score is highest at a threshold of t = 0.89. This threshold is the optimal compromise between Recall and Precision and is therefore used for the matching.

Dataset coverage - proportion of matched filings in all filings, GPTO, 1995-2009

Weighting of the patent data

- It is not plausible that any patent requires the same amount R&D expenditures.
 Differences between technology fields are particularly evident.
 - The relation between patented and non-patented research results is different between the technology fields (difference in the propensity to patent).
 - R&D is expensive in some technology fields and less expensive in others.
- Especially large companies, with large amounts of R&D expenditures and patent filings, often are technologically **heterogeneous.**
- **Solution**: weighting of patents per technology field using an earlier estimation of the patent intensity based on Schmoch et al. (2003) and Schmoch and Gauch (2004).

Weights of patents in technology fields – Indexed on the weight in the field "Transport" (= 100)

Technology field	Weight Transport=100	Equal weight	Technology field	Weight Transport=100	Equal weight
Electrical machinery, apparatus,	10.5	4	Macromolecular chemistry, polymers	57.8	1
energy	19.6	I	Food chemistry	57.8	1
Audio-visual technology	21.5	1	Basic materials chemistry	57.8	1
Telecommunications	181.5	1	Materials, metallurgy	82.9	1
Digital communication	181.5	1	Surface technology, coating	57.8	1
Basic communication processes	57.6	1	Micro-structural and nano-technology	289.0	1
Computer technology	47.2	1	Chemical engineering	57.8	1
IT methods for management	47.2	1	Environmental technology	8.1	1
Semiconductors	47.2	1	Handling	8.1	1
Ontics	25.2	1	Machine tools	8.1	1
optics	25.2	I	Engines, pumps, turbines	20.8	1
Measurement	38.5	1	Textile and paper machines	51.7	1
Analysis of biological materials	38.5	1	Other special machines	8.8	1
Control	26.7	1	Thermal processes and apparatus	8.8	1
Medical technology	29.5	1	Mechanical elements	8.8	1
Organic fine chemistry	57.8	1	Transport	100.0	1
Biotechnology	116 1	1	Furniture, games	15.2	1
Pharmaceuticals	261.3	1	Other consumer goods	3.8	1
			Civil engineering	8.8	1

© Fraunhofer ISI Seite 9

Source: Schmoch and Gauch (2004), R&D survey by Stifterverband für die Deutsche Wissenschaft, 2007 and 2009, EPO – PATSTAT, calculation by Fraunhofer ISI.

Results of the weighting – the aggregate level

- **Two matrices** (weighted and unweighted) with the number of patent applications per technology field within the given economic sector.
- For each economic sector:
 - Calculation of the share of patents in a given technology field on all patents of a given sector (weighted and unweighted)
 - With the help of these shares, the aggregated R&D expenditures per sector can be distributed alongside the technology fields
 - Sum up the R&D expenditures per technology field
- **Finally:** Sum of R&D expenditures for each technology field (weighted and unweighted) as well as the matrices for the conversion \rightarrow transferability to other R&D data sets

Total business R&D expenditures of the German economy in 2009 by technology fields

Technology field	Weighted	Unweighted	Technology field	Weighted	Unweighted
Electrical machinery, apparatus, energy	1.851.049	4.109.213	Macromolecular chemistry, polymers	660.088	707.858
Audio-visual technology	482.407	1.042.977	Food chemistry	248.097	236.662
Telecommunications	2 730 352	716 179	Basic materials chemistry	1.554.572	1.816.982
Digital communication	2.750.552	, 10.175	Materials, metallurgy	1.273.309	731.799
	2.963.248	832.286	Surface technology, coating	1.028.208	801.933
Basic communication processes	380.063	280.259	Micro-structural and nano-technology	1.316.374	222.986
Computer technology	1.697.118	1.804.062	Chemical engineering	1.727.901	1.331.950
IT methods for management	435.133	500.724	Environmental technology	175.333	1.016.653
Semiconductors	1 220 529	1 276 022	Handling	321.576	1.512.352
Optics	1.220.323	1.270.022	Machine tools	372.674	1.925.051
Optics	413.107	866.413	Engines, pumps, turbines	1.988.154	4.489.604
Measurement	2.880.518	3.445.193	Textile and paper machines	1.839.802	1.186.204
Analysis of biological materials	166.395	254.055	Other special machines	352.546	1.769.254
Control	770.377	1.303.496	Thermal processes and apparatus	266.086	1.192.356
Medical technology	1 001 225	1 632 027	Mechanical elements	747.133	3.606.001
Organic fine chemistry	1.712.662	2.276.427	Transport	16.660.697	7.961.966
	1./13.663	2.276.137	Furniture, games	269.898	657.272
Biotechnology	1.144.435	644.455	Other consumer goods	164.747	1.082.777
Pharmaceuticals	4.933.701	1.575.775	Civil engineering	316.611	1.258.195

© Fraunhofer ISI Seite 11

Qualification of the results

- To qualify the results of the conversion, available external information on R&D expenditures for certain technologies were used.
 - A report by the BMBF (2011) about nanotechnologies in Germany contains information about R&D expenditures of surveyed companies. Extrapolated values show expenditures of 1.3 billion Euros (compared to 1.316 in the field of "micro and nano structures" from our calculations).
 - **Information from business unions**: For Biotechnology between 780 million and 1.05 billion Euros compared to 1.1 billion Euros and for the pharmaceutical industry 5.1 to 5.4 billion Euros compared to 4.9 billion Euros.
 - Comparison with the applicant survey of the European Patent Office (EPO 2010) reveals similar patent intensities in chemistry, biotechnology, polymers and electronics. Deviations in the fields of handling, human necessities and civil engineering. Also, higher R&D intensities in the transport sector (effect of industrial structure in Germany).

Further opportunities arising from the conversion

© Fraunhofer ISI Seite 13

Total R&D expenditures in sector 29 "Manufacture of motor vehicles, automotive parts" by technology field

Total R&D expenditure in the technology field "transport" by economic sector

Manufacture of motor vehicles, trailers and semi-trailers						_	63.72%
Manufacture of other transport equipment		11.74%)				
Manufacture of machinery and equipment n.e.c.	5.4	5%					
Manufacture of computer, electronic and optical products	4.32	%					
Manufacture of rubber and plastic products	3.339	6					
Manufacture of electrical equipment	2.10%						
Manufacture of fabricated metal products, except machinery and	2.03%						
Repair and installation of machinery and equipment	2.02%						
Manufacture of basic metals	1.42%						
Scientific research and development	1.10%						
Computer programming, consultancy and related activities	1.01%						
Architectural and engineering activities; technical testing and analysis	0.38%						
Telecommunications	0.34%						
Manufacture of chemicals and chemical products	0.27%						
Warehousing and support activities for transportation	0.13%						
Other manufacturing	0.11%						
Information service activities	0.09%						
Other professional, scientific and technical activities	0.08%						
Manufacture of basic pharmaceutical products and pharmaceutical	0.06%						
Wholesale trade, except of motor vehicles and motorcycles	0.05%						
Manufacture of furniture	0.05%						
Manufacture of other non-metallic mineral products	0.04%						
Office administrative, office support and other business support.	0.04%						
Wholesale and retail trade and repair of motor vehicles and	0.03%						
Manufacture of textiles	0.03%						
Rental and leasing activities	0.01%						
Waste collection, treatment and disposal activities; materials recovery	0.01%						
Printing and reproduction of recorded media	0.00%						
0	% 10	0% 20	% 30	0% 4C	0% 5C)% 60	0% 70%

© Fraunhofer ISI Seite 15

Caveats

- Sometimes multiple entries of patent applicants need to be assigned to one company entry → algorithm allows for that, but the error is increased. For companies that have several divisions but file their patents via their headquarters this is even amplified.
- Different matching algorithms (n-gram, soundex) could be used → tests revealed most to be very time- and resource intensive, Levenshtein distance lead to plausible results
- The assignment of companies to sectors is somewhat artificial. Especially larger "manufacturing" firms are often assigned to "wholesale trade" → manual recoding
- Implicit assumption that the relationship between R&D expenditures and patents within technology fields is more or less constant over time → regular updates are necessary
- Different weighting schemes could be used → weighting with the share of patent filings by field in all patent filings, however, lead to implausible results
- Applying the matching algorithm to **other sources** is possible, e.g. other company databases, patents/publications. Yet, the R&D data at the company level is confidential.

Thank you!

Dr. Peter Neuhäusler

Fraunhofer Institute for Systems and Innovation Research ISI

Breslauer Straße 48 76139 Karlsruhe www.isi.fraunhofer.de

Peter.Neuhaeusler@isi.fraunhofer.de

