Classifying Biomedical Text for Mining Keyword Correlations and Technology Opportunities Analysis

Jing Ma1, Alan Porter2, 3, Natalie Abrams4

1. School of Management and Economics, Beijing Institute of Technology
2. School of Public Policy, Georgia Institute of Technology,
3. Search Technology, Inc.
4. National Cancer Institute
Why study biomedical translation?

- Biomedical research requires strict procedures from formulation development to clinical trial; only a few studies end up leading to marketable products. Application is complex and mixed.
- “It takes an estimated average of 17 years for scientific discoveries to enter day-to-day clinical practice” (and only 14% make it) (Westfall et al., 2007)

Our Perspective:

- **Abundant literature resources**
 Since 1990, over 15 million MEDLINE records
 Titles, abstracts and MeSH headings
- **Tracing biomedical translational process and grasping more detailed insights for Technology Opportunities Analysis (TOA)**
- **Tech Mining:**
 “what” questions? – developmental trends? Hotspots?
 “when” questions? – when will be ready for clinical testing?
Research Framework of GNPs

- **Target field:** Gold nanoparticles (GNPs) for nano-enabled drug delivery (NEDD)
 - seeking articles on therapy, therapy with diagnostics and therapy with imaging
Data Query and Classification

• **Initial Query**
 ✓ PubMed, 2001-2014
 ✓ Search all fields for: (gold nano*) – including 600 variations provided by PubMed
 ✓ Only records with abstracts – with more than 3 sentences
 ✓ Only research articles – not reviews, comments, evaluation studies, news, etc.
 ✓ Retrieved ~10,800 records

• **Refining**
 ✓ Keywords/phrases based query
 ✓ Supervised classification, SVM
 ✓ A manually annotated sample with ~250 records
Steps for classifying records by research fields and medical applications

- Generating NLP words/phrases list from initial dataset (title, abstract, MeSH)
- Top ~2000 words/phrases are manually checked – if some of them are specialized for a specific research field or an application
- Keywords based query + supervised model (using selected keywords as properties)
- Sampling annotated records as training set, and using the others as test set
- Selecting models with relatively high accuracies to predict unannotated records
GNPs therapy application

Therapy Medical % Therapy/Medical

Cancer Therapy % Cancer/Therapy
Translational Stages for NEDD

<table>
<thead>
<tr>
<th>Stage</th>
<th>Descriptions</th>
<th>Sample Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Characterization</td>
<td>Nanoplatform development and optimization for specific electric, magnetic, optical and mechanical properties. Fabrication, design, synthesis, optimization.</td>
<td>particle size, size distribution, molecular weight, density, shape, diameter, aspect ratio, surface characteristics, stability, zeta potential, loading capacity, purity, HAuCl4, etc.</td>
</tr>
<tr>
<td>In Vitro</td>
<td>In vitro assays for efficacy, activity, functional validation, biocompatibility (not rejected by the body), sterility, off target toxicity, targeting, drug release, bioavailability and internalization to ensure that adequate concentrations of the drug are achieved in the target neoplastic tissue/cells.</td>
<td>biological activity, enzymatic assay, binding affinity, target inhibition, gene silencing, in vitro potency, bioavailability, oxidative stress, hepatocyte assay, macrophage, cytotoxicity, necrosis, apoptosis, etc.</td>
</tr>
<tr>
<td>In Vivo</td>
<td>Predictive in vivo efficacy models to support the pharmacology section. In vivo toxicity studies to support the toxicology section. In vivo assays for ADME (absorption, distribution, metabolism and excretion), and pharmacokinetics to support the toxicology section. Comprehensive studies.</td>
<td>tissue distribution, clearance, half-life, systemic exposure, animal models, mice, rats, dogs, metabolites, biomarkers, optimal timing, target validation, gene silencing, potency, first-in-human, clinical trial, clinical study, etc.</td>
</tr>
</tbody>
</table>
GNPs for Cancer Therapy in Stage 1 – Physical Characterization

Developmental trends of several stage 1 keywords

- Stability
- Zeta potential

Keywords:
- particle size
- stability
- shape
- dimension
- zeta potential
- diameter

Techniques:
- electron diffraction
- SERS
- EDX
- DLS
- shape
- dimension
- synthesis
- purity
- HAuCl4
- HAuCl4
- particle size
- deformability
- porosity
- EDX
- nanoscale imaging
- nanocomposites
- surface characterization
GNPs for Cancer Therapy in Stage 2 – In Vitro

Developmental trends of several stage 2 keywords
GNPs for Cancer Therapy in Stage 3 – In Vivo

Developmental trends of several stage 3 keywords

- Pharmacokinetic
- Lung

Graph showing the trends of keywords such as pharmacokinetic, liver, lung, brain, spleen, and kidney from 2004 to 2014.
GNPs and Anticancer Drugs

- GNPs can be used for photothermal therapy, radiotherapy, and drug delivery, etc.
- How do GNPs work with anticancer drugs? Or how do GNPs facilitate the delivery of anticancer drugs?
- In the top ~500 NLP words/phrases, there are four kinds of anticancer drugs.
- #1 is doxorubicin (DOX) – 75 records.
GNPs and Doxorubicin (DOX)

✓ This topic – DOX loaded GNPs is emerging, started from 2008.
✓ Most (63 out of 75) studies have *in vitro* assays. *In vivo* studies mainly started from 2012.
✓ The photothermal effect of GNPs enables controlled release.
✓ Potential target diseases – breast cancer, lung cancer, glioma, liver cancer, etc.
✓ Co-delivery with siRNA has been introduced.
✓ Leading countries – China (27), United States (16), India (7)
GNPs and Doxorubicin (DOX)

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td># Records</td>
<td># Records</td>
<td># Records</td>
</tr>
<tr>
<td>doxorubicin</td>
<td>doxorubicin</td>
<td>doxorubicin</td>
</tr>
<tr>
<td>particle size</td>
<td>cancer cell</td>
<td>metabolism</td>
</tr>
<tr>
<td>synthesis</td>
<td>toxicity</td>
<td>mice</td>
</tr>
<tr>
<td>stability</td>
<td>Cytotoxicity</td>
<td>survival</td>
</tr>
<tr>
<td>Transmission electron microscopy</td>
<td>apoptosis</td>
<td>absorption</td>
</tr>
<tr>
<td>electron microscopy</td>
<td>cell death</td>
<td>distribution</td>
</tr>
<tr>
<td>diameter</td>
<td>accumulation</td>
<td>pharmacokinetic</td>
</tr>
<tr>
<td>shape</td>
<td>cellular uptake</td>
<td>liver</td>
</tr>
<tr>
<td>density</td>
<td>ligand</td>
<td>xenograft</td>
</tr>
<tr>
<td>dimension</td>
<td>cell viability</td>
<td>80</td>
</tr>
<tr>
<td>aggregation</td>
<td>113</td>
<td>103</td>
</tr>
<tr>
<td>scanning electron microscopy</td>
<td>drug release</td>
<td>lung</td>
</tr>
<tr>
<td>absorbance</td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td>dynamic light scattering</td>
<td>inhibition</td>
<td>Rats</td>
</tr>
<tr>
<td>zeta potential</td>
<td>Cell proliferation</td>
<td>tissue distribution</td>
</tr>
<tr>
<td>aspect ratio</td>
<td>flow cytometry</td>
<td>brain</td>
</tr>
<tr>
<td>surface area</td>
<td>64</td>
<td>47</td>
</tr>
<tr>
<td>size distribution</td>
<td>drug release</td>
<td>kidney</td>
</tr>
<tr>
<td>X-ray diffraction</td>
<td>63</td>
<td>tumor model</td>
</tr>
<tr>
<td>MTT assay</td>
<td>drug release</td>
<td>gene silencing</td>
</tr>
</tbody>
</table>
GNPs and Doxorubicin (DOX)

Coating Material
- Graphene
- Silica
- Chitosan
- Folic acid (FA)

Particle Type
- Gold nanorod
- Hydrogel
- Gold nanoshell
- Gold nanosphere

Technique
- Photothermal ablation (PTA)
- Hyperthermia
- Co-delivery, siRNA

Target Disease
- Breast cancer
- Glioma
- Liver cancer
- Lung cancer
Conclusions

• Introducing classification algorithms to support lexical query. In this case, the research framework of GNPs (or other biomedical related fields) is complex. The lexical query can not be directly used for retrieving a clean dataset for a specific topic.
• Grouping translational stage-oriented keywords to locate translational clues in biomedical research.

Next

• Preliminary results, need more refinement and discussion with domain experts.
• Characterizing records into stage 1, 2 and 3 for more tracking development.
• To analyze text content -- even full text -- for tracing the translational pathways of a specific biomedical topic/technology.

• Thanks to Dorothy Farrell, Piotr Grodzinski, and Donghua Zhu for their contributions.
Thank you!

We acknowledge support from the US National Science Foundation (Award #1064146 – “Revealing Innovation Pathways: Hybrid Science Maps for Technology Assessment and Foresight”). The findings and observations contained in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.