How the analysis of structural holes in academic discussions helps in understanding genesis of advanced technology

Konstantin Fursov Alina Kadyrova

Background

- Continual emergence and dissemination of new technologies
- Importance of certain technology groups for intensive economic growth (next industrial revolution)
- Widespread and increasing interest in developing of statistical indicators explaining evolution and predicting growth of new (emerging) S&T areas
- Lacking conventional definitions and taxonomies for "promising" technology areas against a growing number of umbrella concepts (advanced, emerging, enabling, converging, disruptive, critical and other technologies)

Why advanced technologies (AT)?

Research question

Do studies in AT constitute a separate research field or with the category we have another 'endless frontier'?

In other words, in professional scientific discourse on advanced technology can we identify a communication core that set up conceptual framework and/or research agenda for a certain period?

Methodology

- 0. Identification of relevant academic papers in the corps of professional literature
- 1. Analysis of *publication dynamics* in order to identify relevant periods of sustainable growth for in-depth exploration
- 2. Keyword analysis to highlight main research topics in each of the periods
- 3. Co-citation analysis to single out networks that had set up research agenda for each of the periods
 - as invisible colleges (Gmür, 1973) or clusters of science (Small, 1999)
 - as sources of inspiration for emerging topics (Small et al., 2014)
 - as 'knowledge base' of certain fields (Fagerberg & Verspagen, 2009; Fagerberg et al., 2012)
- 4. Application of betweenness centrality to identify core elements of the networks
 - optimally positioned actors that can accumulate information flows from dislocated parts of a network (Bavelas, 1948, 1950)
 - structural holes that provide opportunities for mediating knowledge flows in a wider community of actors (Burt, 2002)
- 5. Comparing betweenness centrality of papers cited in two consecutive periods with papers cited in one period only

Publication dynamics

Query TS="advanced technolog*" or TI="advanced NEAR technolog*".

Keyword analysis before 1990: homogeneity of discussions

Top 5 domains

- Engineering
- 2. Business/economics
- 3. Other topics of science and technology
- 4. Material science
- 5. Optics

Key issues: role of technologies in economic development engineering education and skills human resource management

Keyword analysis 1991-2000: primary specialization (manufacturing)

2

Keyword analysis 2001-2010: AT beyond manufacturing

Keyword analysis 2011-2015: focus on implementation & management

Co-citation networks: key parameters

Selected for further analysis

before 1990

N = 1268 Threshold = 1 Connected nodes = 128

Key issues: role of AT in changing social and economic structure

Key issues: technology and innovation management

Key issues: management of tech, innovation, globalization Key issues: technology domination

Identification of structural holes

Moving to the next period = 85 Share of total = 3.3%

Moving to the next period = 118 Share of total = 7.1%

Potentially moving = 358 Share of total = 15.1%

		1	2	3	4	5
	Period	1960-1990	1991-2000	2001-2010	2011-2015	2016
1	1960-1990	-	0			
2	1991 - 2000		1	85	26	10
3	2001 - 2010			-	118	42
4	2011-2015				-	358

Period	Mean betweenness of authors who move	Mean betweenness of authors who don't move	Wilcoxon statistics	p value
1991 - 2000	31822.6	3124.6	18827	< 0.01
2001 - 2010	17883.2	5986.6	3050	< 0.01

5

Identifying key technology driven areas from papers with higher betwenness centrality

1991-2000

• Global technology markets and emergence of new form of firms – multinational; Foreign investments and their spillover effects; Measuring productive efficiency; Innovation development; Technological change

2001-2010

• All previous + Biotechnology, Nanotechnology, Oncology, Semiconductors, Mathematical modeling, Astronomy (Advanced Technology Solar Telescope), Microelectronics, Environment, Medicine

2011-2015 (topics likely to emerge in the further decade)

• Environment; Energy; Fuels; CMOS Transistors; Electrical Engineering; Genetics; Geochemistry; Material Sciences; Meteorology; Oncology; Technology and Society

Discussion and conclusions

 There is observable penetration of the concept on 'Advanced Technology' from social sciences discourse to natural and engineering disciplines identified both through the analysis of co-citation networks and keywords mapping:

from R&D and technology management (1991 – 2000) to innovation studies (2001 – 2010) and discussions on specific technologies (2011 – 2015)

- Co-citation networks eliminated a common background for the papers in the observable periods and therefore can be considered as a 'knowledge base' of the professional discussions, however, different traditions in citations might lead to systemic bias towards certain disciplines
- Application of centrality metrics allowed identification of key works of the period and empirically verify the adoption of the 'politically sounding' term by specific studies in technology
- No stable communication core was identified there is still continuous diversification of the topics associated with the concept of advanced technology
- Further work can be aimed at deeper analysis of the disciplinary structures in communication networks and identification of specific technologies considered as advanced in certain time periods

Thank you!

ksfursov@hse.ru akadyrova@hse.ru