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Motivation and Problem Formula-
tion



Motivation

How to generate thematic groups of researches using the titles of the
research projects of National University.

2016/09/13

Sid 3



Problem Formulation

The low occurrence rate of a word across documents causes the small number
of words in common among documents. An Example in a specific field:

1. (D1) A review of theory and practice in scientometrics.
Term: review theory practice scientometrics
D1 1 1 1 1

2. (D2) Citation score normalized by cited references (CSNCR).
Term: Citation normalized cited references CSNCR
D2 1 1 1 1 1

3. (D3) A review of the literature on citation impact indicators.
Term: review literature citation impact indicators
D3 1 1 1 1 1

The low occurrence rate of a word across documents causes the small number
of words in common among documents. An Example in a specific field:

1. (D1) A review of theory and practice in scientometrics.
Term: review theory practice scientometrics
D1 1 1 1 1

2. (D2) Citation score normalized by cited references (CSNCR).
Term: Citation normalized cited references CSNCR
D2 1 1 1 1 1

3. (D3) A review of the literature on citation impact indicators.
Term: review literature citation impact indicators
D3 1 1 1 1 1

The final BOW:

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13

D1 1 1 1 1 0 0 0 0 0 0 0 0 0
D2 0 0 0 0 1 1 1 1 1 1 0 0 0
D3 1 0 0 0 1 0 0 0 0 0 0 1 1

The final BOW:

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13

D1 1 1 1 1 0 0 0 0 0 0 0 0 0
D2 0 0 0 0 1 1 1 1 1 1 0 0 0
D3 1 0 0 0 1 0 0 0 0 0 0 1 1

represent a challenge for conventional text
mining techniques.
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Problem Formulation

Small number of terms �⇒ poor statistical information to find any kind of
relationships.

Cosine similarity ussing tf-idf representation of
original text
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Background



General Idea

Use external source to expand the original representation of short
texts.
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External Source problem

# Find a apropiate external source to expand the semantic
meaning of the documents.
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Distributional Term Representation (DTR)

A DTR is a way to expand semantic representation of terms,
compute w jk extracted of related text [Cabrera et al., 2013].
Let w jk .The representation of a document di based on DTRs is:

ddtr
i =

∑
t j∈di

α j wt j

Where α j is a scalar that weights the contribution of term
t j ∈ di into the document representation. Many options are
available for defining α j.
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DOR Representation

Let w jk ∈ [0, 1] represents the contribution of k-th document to
semantics representation of j-th text.

D = dia g
( |T |
π(d1)

, . . . ,
|T |
π(dN)

)
DOR = (1 + lo g(AT))︸           ︷︷           ︸

A′

D

Where Ai j = d f (d j , ti), π(dk) is the number of diferent terms in
the dictionary T, that appear in the document dk , it’s mean
π(dk) = |{ti | ti ∈ dk ∧ ti ∈ T}|.
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TCOR Representation

We found w⃗ j =< w j1 , . . . , w j |T | >∈ R |T |, such that t j ∈ T and
w jk ∈ [0, 1] that is the contribution of k-th term to semantics
representation of j text.

D = dia g
( |T |
γ(t1)

, . . . ,
|T |
γ(t|T |)

)
TCOR = DB

′
= D(1 + lo g(Bt ∗ B))

Where Bi j =
1 si t j ∈ di

0 e.o.c
, γ(t j) represents the number of

diferent terms in the dicctionary T that co-occurs with t j in at
least one document.
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Word2Vec Representation

Maps words to continuos vector representations (i.e. point in an
N-dimensional space), using the continuous skip-gram model
[Mikolov et al., 2013].

Copyright by Chris McCormick,
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Word2Vec Representation

Post-training, associate every word w ∈ W with a vector w⃗ j:

# w⃗ j is the vector of synaptic strengthes connecting the input
layer unit w j to the hidden layer

# more meaningfully, w⃗ j is the hidden-layer representation of
the single-word context C = w j.

# vectors are (artifically) normed to unit length (Euclidean
norm), post-training
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Proposed Methodology



General Process Map

Short-text clustering method proposed
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Preprocessing Step

# Constructing language
classifier.

# Identify
English/Spanish
Documents.

# Google Translate API
on Clud Google Service

Language Detection

♣

# Depurate original, remove recurrent words.
# Remove Stop Words (NO Steming).
# Tokenization and construct dictionary.

Pre-processing

♣
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Query Process

# Use Scopus API and
Scien Direc API
◦ Maximum 100

articles retrived by
query

◦ Explore number of
document

# Contruct a Python
wrapper for Elsevier
APIs

Query Process

♣
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Distributional representation

1. Consolidate and depurate abstracs
retrived.

2. Make co-ocurrence term matrix
and

3. Build our own Word2Vec model
based on Scopus data base.

4. Compute distributional term
representation:
◦ Using TCOR representation
◦ Using DOR representation
◦ Using Word2Vec models:

(Google News, Wikipidea and
own Word2Vec representation)

Distributional Representation

♣
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Clustering Algorithms

# Kernel K-Means (Cossine Kernel, Gaussian Kernel)
# Spectral Clustering
# Non-Negative matrix factorization
# Online Kernel Matrix Factorization (OKMF)

Methods

♣

# Davies - Bouldin
# QError
# Silhouette

Internal Validation

♣

# Purity
# Adjusted mutual

information score
# V Measure score
# Adjusted rand score

External Validation

♣
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Experimental Results



Experimental Setup

Used in validation

Construc
Test Dataset (20

Key Words Selected)

d1

d2

...

d1696
w⃗1 , w⃗2 , ..., w⃗M

Compute
Word Em-

bedings

Validation
Procces

Data Base - Scopus

System Combination
Algorithm

Estimated Parameters
from training

d1

d2

...

dN

Clustering
Word Em-

bedings

Data Base - UN (Original Data Set)
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Data Sets

Scopus Data Set

# We construct this data
set selected 20 different
key words.

# We make queries and
consolidate a data set
with 1696 titles (our gold
standard).

# We have 76820 different
terms and 22267

documents retrieved.

UN Data Set

# The initial data set has
3718.

# Processioning text
removing some string
using regular expression.

# In this data set we have
202792 different terms
and 37069 documents
retrieved.
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Tf-idf vs Word2Vec-Representation

Cosine similarity using tf-idf representation of original text (left) and word2Vec expanded
representation (right).
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Comparison of clustering methods
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Conclusions

# The performance of methods using external knowledge
related to the document collection was better than the
performance of traditional methods.

# Kernel Kmeans and Spectral Clustering showed better
results that the other methods tested.

# (Future Work) We would be used a Spanish corpus to train
word2Vec word embeding.
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¿Some Question?
Thank
you
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