8th Annual Global TechMining(GTM) Conference September, 2018 Leiden, Netherlands

Visualizing Dispersed Risk Signals for A Specific Emerging Technology: A Novel Approach of Keywords Aggregation across Topics (KAAT)

School of Business,
South China University of Technology, China
Prof. Munan Li
2018-09

Email: limn@scut.edu.cn

Research Background

- A typical interdisciplinary topic query:
- "Risk for Graphene, Additive Manufacturing" could involve social science, management, business, environment science, engineering and so forth.
- Research Question:
- For a specific emerging technology, Can we timely and efficiently discovery the risk signal / relevant works, especially in early period?

Research Design

 Goal: Attempt to find a simple algorithm of machine learning to improve the capability and efficiency of discovery the risk signals of a specific emerging technology from publications, patents, and even Internet space.

- Keywords Aggregation across Topics (KAaT):
- KAaT could be or could be similar with a simple algorithm of machine learning
- Basic Philosophy (Components) of Machine Learning:
- (1)Computation logic (e.g. Non-linear programing model)
- (2) Training & Optimize parameters
- (3) Run Algorithm
- (4) Verification & Feedback

- KAaT could be taken into account a naïve machine learning.
- Why is it naïve?
- Because this algorithm only utilize the basic philosophy of machine learning, and not involve such complicated topic modeling: LDA, LSA and etc.

Phase I: To find the synonyms of risk

KAaT: Produce Training Sample in Phase II

- TS="emerging technolog*" AND
- TS=(risk* OR unsafe OR uncertainty OR danger* OR peril OR threat* OR menace OR fear OR unpredictab* OR precarious* OR instability* OR insecurity* OR perilousness OR venture OR jeopardy OR loss OR chancy OR toxic OR poison* OR vulnerability OR injury OR hazard* OR misfortune OR endanger OR jeopardize OR imperil) AND TS =(environment* OR health* OR security OR safety OR ecosystem OR "air pollution" OR "soil contaminat*" OR "water pollution" OR "water cotaminat*")
- AND DOCUMENT TYPES: (Article)
- Indexes=SCI-EXPANDED, SSCI, A&HCI, ESCI, CCR-EXPANDED Timespan=2007-2009

Training Sample	Signal	Noise	Accuracy(%)	Presumed Recall(%)
83	15	68	18.07	100

Algorithm training is to find the optimized keywords combinations that can efficiently identify signal and noise.

Training Results:

Training Times (Attempt the	Recall >0 &	Recall > 20%	Accuracy > 50%
different combinations of Terms	Accuracy >0		
11372	170	13	126

If the Recall (%) is prior to Accuracy (%), such keywords as: risk, health, environment, toxicity; and those 126 combination of keywords whose Accuracy is larger than 50% are selected to the next computation.

Case Study: The Risk Discovery of 3D printing/Additive Manufacturing

	Query Formula	Result	Туре	Refine Rules
#1	TS=((3D OR 3-D OR "3 dimension*" OR "three	8477	ARTICLE (5,321)	DOCUMENT TYPES: (ARTICLE
	dimension*" OR additive) NEAR/2 (print* OR		PROCEEDINGS	OR PROCEEDINGS PAPER OR
	fabricat* OR manufactur* OR product*))		PAPER (3,043)	REVIEW)
			REVIEW (345)	Timespan: 2015-2016. Indexes:
				SCI-EXPANDED, SSCI, A&HCI,
#2	TS=((3D OR 3-D OR "3 dimension*" OR "three	995	ARTICLE (609)	CPCI-S, CPCI-SSH, BKCI-S,
	dimension*" OR additive) NEAR/2 (print* OR		PROCEEDINGS	BKCI-SSH, ESCI, CCR-
	fabricat* OR manufactur* OR product*)) AND		PAPER (340)	EXPANDED, IC.
	TS=(risk* OR pathogen OR "Scenario planning"		REVIEW (72)	·
	OR environment* OR health OR toxic*)			

(#1) query formula refers the work of Yin Huang et al., which is published in 2017. and (2#) query formula combines 1# with training results.

Descriptive results on 3D printing studies:

Descriptive results on 3D printing studies:

Top 15 Countires/Regions on 3D printing papers in WOS

Descriptive results on 3D printing studies:

Naïve Machine Learning Result:

Finally, based on the 126 rules, 99 publications are selected from 995 samples; and 23 are matched signal, another are noise; therefore, the recall is 100%, accuracy is just 23%.

KAaT: a naïve algorithm of machine learning Conclusion or Implication

In summary, based on the introduced NML (Naïve Machine Learning), a method or algorithm for discovery the risk signal of a specific emerging technology are explored. And NML can compress the noise space, and bring a moderate accuracy of identification.

Also, in the future research, more complicated semantic modeling can be integrated into NML to further improve the accuracy.

Research Extension: Can the above question be transformed into a linear classifier question?

A classic linear classifier:

Support Vector Machine (SVM)

Support Vector Machines

Support Vector Machines

Support Vector Machines $f(x, \mathbf{w}, b) = sign(\mathbf{w}, \mathbf{x} - b)$ +1 -1 **Linear Classifier** margin: the distance between hyper surface and the 0 0 nearest samples (dots) 0 0 0

Find the biggest margin

Hyperplane and the margin

Compute margin

- Plus-plane $= \{ x : w . x + b = +1 \}$
- Minus-plane = $\{ x : w . x + b = -1 \}$

So, the above question could be transformed into Optimization question (Quadratic Programming)

Minimize
$$\frac{1}{2}$$
 w.w

$$y_k$$
 (w . $x_k + b$)>= 1
 $k=1,2,...,n$

Research Extension II: Can be transformed into Bipartite Graph? (And then, graph theory and those related algorithms could be helpful)

U: the <u>relevant</u> papers on risk analysis
(Environment, <u>Health</u> and <u>Safety etc.</u>) for a specific emerging technology

V: the <u>irrelevant</u> papers on risk analysis (<u>Environment</u>, <u>Health</u> and <u>Safety etc.</u>) for a specific emerging technology

U+V: All papers on the specific emerging technology(e.g. 3D printing, synthetic biology, Graphene, etc.)

Thank you!