## INTEGRATING DIFFERENT DATA SOURCES — NEW ANALYTICAL POTENTIALS

Rainer Frietsch Fraunhofer ISI, Karlsruhe, Germany



Image Source: istockphoto.com



### Structure of the talk

- 1. Starting Points
- 2. Challenges and Potentials
- 3. Example 1: R&D data and patents
- 4. Example 2: University-invented patents
- 5. Example 3: Patent-paper twins

### Starting Points

- My hypothesis (better: my conviction): the available structured data is still under-explored
- Data enrichment: Classifications, gender information, experience (cumulated information), regionalisation/geo information/distance
- Text mining: finding new structures in structured data, e.g. emerging fields, classifications, "hidden information" like strategies

#### Matching data

- Macro data: similar classifications (mainly for academic exercises), e.g. exports and patents, R&D expenditure and patents, publications and project funding
- Micro data: firms' and persons' names matching, e.g. CVs and patents, CVs and publications, R&D expenditure and patents, firm data and patents/publications, patents and publications
- Recent examples: Marie Curie fellows and publications; Hoppenstedt/Orbis and patents; EU Scoreboard and patents; DTI Scoreboard, patents, and COMPUSTAT German R&D survey and patents; university invented patents; patent-paper twins



Matching Patent and Firm Data — Challenges and Potentials

## Major challenges

- Mergers and Acquisitions / Renaming
- International branches (not only headquarter)
- Subsidiaries might be the filing authority
- Ownership of companies



## Major challenges – applicants versus companies

- Patent data are at the level of patent applicants but patent applicants are not necessarily companies, which leads to several challenges.
  - Within the patent database (PATSTAT) the names of applicants are in raw data format
    - Different spelling variations of the same company name.
    - might include abbreviations, special characters, typing errors, legal form etc.
    - Which firm level is to be covered?
      - Possible Biases:
        - a) The patent applicant might be the parent company, a business unit or a subsidiary.
        - b) Firm policy might state to file all patents via one single applicant (e.g. Siemens in Munich).
  - **Firms** are "changing" over time. Mergers and Acquisitions, buy-outs and sales of subsidiaries make time-series analyses difficult.

### Name harmonization

#### EEE-PPAT Table by the K.U. Leuven

- Automated harmonization of all patent applicant names in PATSTAT
- Based exclusively on the names available in PATSTAT (including addresses) and does not use any additional information from outside the database

#### Stepwise validation:

- Character cleaning (HTML format codes, accented characters), punctuation cleaning, legal form indication cleaning (Inc., LTD, GmbH etc. = Company), common company word removal ("COMPANY", "CORP", "CORPORATION")
- Spelling variation harmonization ("SYSTEM", "SYSTEMS", "SYSTEMES"), condensing of irrelevant characters ("3 COM", "3COM"), Umlaut harmonization

#### The OECD HAN Database

- Dictionary of applicant names is used
- Identification of firms, non-business organizations and individuals
- Name cleaning of applicant names (steps 1 and 2 of the K.U. Leuven algorithm)



## An exemplary overview - Bayer AG

| PERSON NAME                        | DOC STANDARD NAME              | EEE-PPAT NAME             | HAN NAME                     |
|------------------------------------|--------------------------------|---------------------------|------------------------------|
| Bayer A.G.                         | BAYER AG                       | BAYER                     | BAYER AG                     |
| Bayer AC                           | BAYER AC                       | BAYER AC                  | BAYER AC                     |
| Bayer Adtiengesellschaft           | BAYER AG                       | BAYER                     | BAYER ADTIENGESELLSCHAFT     |
| Bayer AG                           | BAYER AG                       | BAYER                     | BAYER AG                     |
| Bayer Akgiengesellschaft           | BAYER AKGIENGESELLSCHAFT       | BAYER                     | BAYER AKGIENGESELLSCHAFT     |
| Bayer Akiengesellschaft            | BAYER AG                       | BAYER                     | BAYER AKIENGESELLSCHAFT      |
| Bayer Aktlengesellschaft           | BAYER AKTLENGESELLSCHAFT       | BAYER                     | BAYER AKTLENGESELLSCHAFT     |
| Bayer Animal Health GmbH           | BAYER HEALTHCARE AG            | BAYER ANIMAL HEALTH       | BAYER ANIMAL HEALTH GMBH     |
| Bayer BioScience GmbH              | BAYER BIOSCIENCE GMBH          | BAYER BIOSCIENCE          | BAYER BIOSCIENCE GMBH        |
| Bayer Business Services GMBH       | BAYER BUSINESS SERVICES GMBH   | BAYER BUSINESS SERVICES   | BAYER BUSINESS SERVICES GMBH |
| Bayer Chemical Aktiengesellschaft  | BAYER CHEMICAL AG              | BAYER CHEMICALS           | BAYER AG                     |
| Bayer Chemicals AG                 | BAYER CHEMICALS AG             | BAYER CHEMICALS           | BAYER CHEMICALS AG           |
| Bayer Chemicals Aktiengesellschaft | BAYER CHEMICALS AG             | BAYER CHEMICALS           | BAYER CHEMICALS AG           |
| Bayer CropScience AG               | BAYER CROPSCIENCE AG           | BAYER CROPSCIENCE         | BAYER CROPSCIENCE AG         |
| Bayer CropScience                  | BAYER CROPSCIENCE AG           | BAYER CROPSCIENCE         | BAYER CROPSCIENCE AG         |
| Bayer CropScience GmbH             | BAYER CROPSCIENCE GMBH         | BAYER CROPSCIENCE         | BAYER CROPSCIENCE GMBH       |
| Bayer HealthCare AG                | BAYER HEALTHCARE AG            | BAYER HEALTHCARE          | BAYER HEALTHCARE AG          |
| Bayer Schering Pharma AG           | BAYER SCHERING PHARMA AG       | BAYER SCHERING PHARMA     | BAYER SCHERING PHARMA AG     |
| Bayer Schering Pharma Aktien       | BAYER SCHERING PHARMA AG       | BAYER SCHERING PHARMA     | BAYER SCHERING PHARMA AG     |
| Bayer Technology Services GmbH     | BAYER TECHNOLOGY SERVICES GMBH | BAYER TECHNOLOGY SERVICES | BAYER TECH SERVICES GMBH     |

#### Two basic problems:

- Spelling variations
- Parent company (ultimate owner), company, business unit, M&As



### Companies vs. business units

- Companies or enterprises are subject to major changes over time.
  - Companies are not always the patent applicant (and then also not named on the patent application)
  - Business units usually do not show up within patents

#### Possible solutions:

- Identification of applicants and assignment to business units according to the address of the inventor
  - Problems: Inventors of several business units might be involved, inventors use their private addresses, external collaborations
- Identification of applicants and assignment of technologies to business units

Matching of R&D survey data and patents

## The matching procedure

#### Aim

- Finding information of patent applicants in PATSTAT, which fit (or are similar) to a firm/branch in the German R&D survey by Stifterverband
- Name cleaning
  - Cleaning of different spellings: use of small letters, "umlaute" and special characters, blanks, deletion of legal forms
- Similarity between names
  - Levenshtein-Distance of names: minimal number of editing steps to make the two texts identical
  - If the first three digits of the zip code do not match (given they are available), then similarity = 0
- Selection of matches
  - Is the similarity higher than the defined threshold, then we define this as a match. The threshold is empirically defined by recall and precision



## Coverage by type of applicants (share of matched applications in total applications)







### Reasons for incomplete coverage

- Not all patenting companies are covered by the company database
  - For example: BSH BOSCH UND SIEMENS HAUSGERAETE, HARMAN BECKER AUTOMOTIVE SYSTEMS, OSRAM
  - → 10.4% of all companies with more than 100 transnational patents between 2005 and 2009.
  - $\rightarrow$  Partial assignment of the missing firms to enterprises (e.g. OSRAM, BSH).
- Matching algorithm only for the priority years 2005-2009 (reduction of data), but patent data is used for the period 1995-2009  $\rightarrow$  increased error rate in earlier years
- **F-Score matching** cannot reach 100%

Identifying university-invented patents (instead of only university owned patents)

Dornbusch, F.; Schmoch, U.; Schulze, N.; Bethke, N. (2013): Identification of university-based patents: A new large-scale approach. In: Research Evaluation, 22 (1), S. 52-63.

## Patent output of universities

- Since the end of the 1990s, most European countries have been moving away from the individual ownership of academic patents towards systems of **institutional ownership** by the universities (e.g. Geuna/Rossi 2011; Lissoni et al 2008).
- Germany had abolished the so called Professors Privilege in 2002
- However, there are still some ways of "bypassing" the university ownership
- In addition, contract and collaborative research may not appear as university patents.
- Collaboration structures could be detected by analyzing the full scale of university patents
- University owned vs. university invented
- Problem: inventor affiliations are not listed on the patent
- **Solution 1**: adding affiliations by a name matching of authors and inventors
- Solution 2: tracking all inventors on university-owned patents by their IDs in the database



## 1. Step: The matching algorithm - Identification of academic patents

- An approach for the identification and analysis of academic patents
- Basic idea: Match identical names of authors with university affiliation and inventors
  - Data sources: PATSTAT and SCOPUS



<sup>\*=</sup> meanwhile NUTS3 Codes and distance matrix applied

See also: Dornbusch et al. 2013. Identification of university-based patents: A new large scale approach. Research Evaluation 22, 52-63.

# Recall & Precision in identification of academic patents

Verification of matching results → Precision and Recall analysis:

- Recall → Percentage of university-owned patents covered by the algorithm:
- Precision → Online-Survey covering all authors for whom academic patents have been identified:
  - 1,681 person with 2,782 filings addressed
  - 435 exploitable answers (26%) received

|                    | Selection                          | Recall | Precision | F-Scores              |                         |                       |
|--------------------|------------------------------------|--------|-----------|-----------------------|-------------------------|-----------------------|
|                    | criteria                           |        |           | R=P (F <sub>1</sub> ) | P>R (F <sub>0,5</sub> ) | R>P (F <sub>2</sub> ) |
|                    | 1-digit pc*                        | 0,76   | 0,63      | 0,69                  | 0,65                    | 0,73                  |
| Standard criterion | 2-digit pc *                       | 0,71   | 0,77      | 0,74                  | 0,76                    | 0,72                  |
|                    | F-conc                             | 0,71   | 0,52      | 0,60                  | 0,55                    | 0,66                  |
|                    | 1-digit pc*, F-conc                | 0,64   | 0,82      | 0,72                  | 0,78                    | 0,67                  |
| High precision     | 2-digit pc*, F-conc                | 0,59   | 0,93      | 0,72                  | 0,83                    | 0,64                  |
| High recall        | 2-digit* OR (1-digit* pc + F-conc) | 0,74   | 0,72      | 0,73                  | 0,72                    | 0,74                  |

<sup>\*=</sup> meanwhile NUTS3 Codes and distance matrix applied

Dornbusch et al. 2013. Identification of university-based patents: A new large scale approach. Research Evaluation 22, 52-63.



## Absolute number of university patents in Germany



Source: EPO – PATSTAT; Elsevier – SCOPUS; Fraunhofer ISI calculations.



## Shares of university patents in Germany



Source: EPO – PATSTAT; Elsevier – SCOPUS; Fraunhofer ISI calculations.

Example 4: Patent-Paper Twins

## Background and motivation

- There are several studies that try to find similarities in patents OR publications or patents
  AND publications to identify similar scientific or technological fields
- Some studies are on the level of researchers/inventors (e.g. Meyer 2006)
- Some try to find twins based on general similarities (e.g Magermann et al. 2010; Magermann et al. 2012)
- **Technically speaking**: If you compare all patent abstracts with all publication abstracts, you will find a lot of similarities, but you might not be able to pin it to the same origin
- Therefore, we used a two stage approach to figure out what comes (probably) really out of the same piece of research
- Using the link on the inventor/author level, we identify similar patents and publications by the same inventors/authors
- We end up with two datasets
  - one for patents to address the first research question and
  - one for publications to address the second research question



## Content (cosine) similarity

- Stop-word removal: Common words having no distinctive meaning are removed
- **Stemming**: Stripping word-suffixes to combine word variants with shared meanings → "Porter Stemmer" (van Rijsbergen et al. 1980; Porter 1980) applied
- Cosine-similarity between term vectors calculated: Inner product of two vectors divided by the product of their Euclidean norms  $\rightarrow$  1= similar vectors; 0 = unrelated vectors
- Patent-paper pairs of three author-inventors independently evaluated by three researchers
  → Threshold for cosine similarity used here is 0.6

## Shares: academic patents with corresponding publications - and vice versa



Source: EPO – PATSTAT; Elsevier – SCOPUS; Fraunhofer ISI calculations.



## Are academic publications with correspond. patents scientifically more valuable?

#### **Publications**

| dV                    | Scientific regard |     | Int. allignment |     | No. of citations |     |
|-----------------------|-------------------|-----|-----------------|-----|------------------|-----|
|                       | β                 | sig | β               | sig | 9a / 9x          | sig |
| patent_dummy          | 0.056             | *** | -0.095          | *** | -0.255           |     |
| Field_controls        | YES               |     | YES             |     | YES              |     |
| Year_dummies          | YES               |     | YES             |     | YES              |     |
| N                     | 44262             |     | 49975           |     | 57278            |     |
| pseudo R <sup>2</sup> |                   |     |                 |     | 0.010            |     |
| R <sup>2</sup>        | 0.0               | 07  | 0.112           |     |                  |     |

OLS & Neg.-bin regression

Source: EPO – PATSTAT, own calculations.

Significance Level: \*\*\*p<0.01, \*\*p<0.05, \*p<0.1, robust standard errors.

Source: EPO – PATSTAT; Elsevier – SCOPUS; Fraunhofer ISI calculations.