Hierarchy versus Similarity: Visualizing Technological Distance Using Patent Overlay Mapping

Jan Youtie, Georgia Tech, USA

from L. Kay, N. Newman, J. Youtie, A.L. Porter, I. Rafols, 2013. Patent Overlay Mapping: Visualizing Technological Distance, *Journal of the American Society for Information Science and Technology*

Can we make a map of patents?

Can we develop a map of technological distance/diversity/ similarity on the patent side similar to what is on the science side?

Challenge: Science which has agreed upon disciplines; patent classes can be heterogeneous

What is Technological Distance/Diversity?

A particular patent class represents a technological position

- Common knowledge base, heuristic, scientific principle
- Similar knowledge flows: patents in a class more likely to cite other patents in that same class

Distribution of patents across classifications in a patent hierarchy proxies technological diversity/distance

• Firms rely on distributed technological capabilities rather than just a core set

Technological diversity concept examples

- Indicator of more radical innovations
- "Structural holes"
- Specialization v. diversity in regional capabilities
- Similarity of 2 patent portfolios inverted "U"

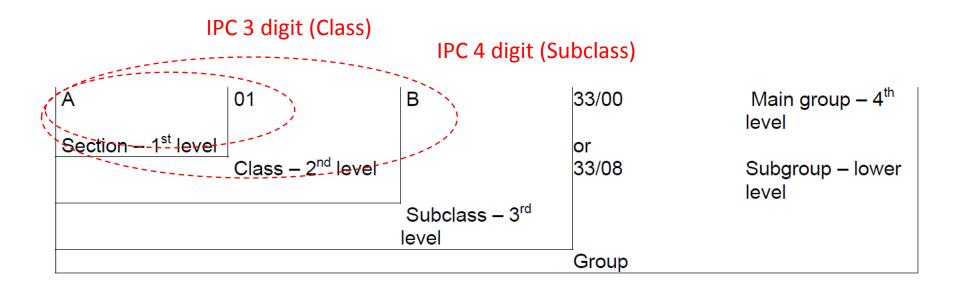
But there are measurement issues \rightarrow Our contribution focuses on 2 issues

Jaffe 1989; Breschi, Lissoni, Malerba 2003; Hinze et al. 1997; Granstand, Patel, Pavitt, 1997; Olsson 2004; Hollingsworth, 2000; Nooteboom et al. 2007

Issue 1. Is there similarity within hierarchy?

• Sections

- A HUMAN NECESSITIES
- B PERFORMING OPERATIONS; TRANSPORTING
- C CHEMISTRY; METALLURGY
- D TEXTILES; PAPER
- E FIXED CONSTRUCTIONS
- F MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- G PHYSICS
- H ELECTRICITY
- Classifications in the same broad category are more similar than those in different broad categories
 - Counts
 - Shares
 - Herfindahl


Source: http://www.wipo.int/classifications/ipc/en/

Issue #1 Illustrated

- IPC classes in different sections maybe similar based on co-occurrence or citation similarity
 - A61K (incl. drugs) ≈ C07 (organic chemistry)

– A61K ≉ A42B (hats)

Issue 2. There are patent maps*, but most are at a given hierarchical level

* e.g., Hinze et al. 1997, Leydesdorff et al. in press.

Source: Guide to the IPC (2013), p. 6.

Issue #2 Illustrated

 Different IPC classes have different propensity to patent

A61K (Preparations for Medical, Dental, or Toilet Purposes, e.g., Drugs) =

A42B (Hats) =

Our Approach

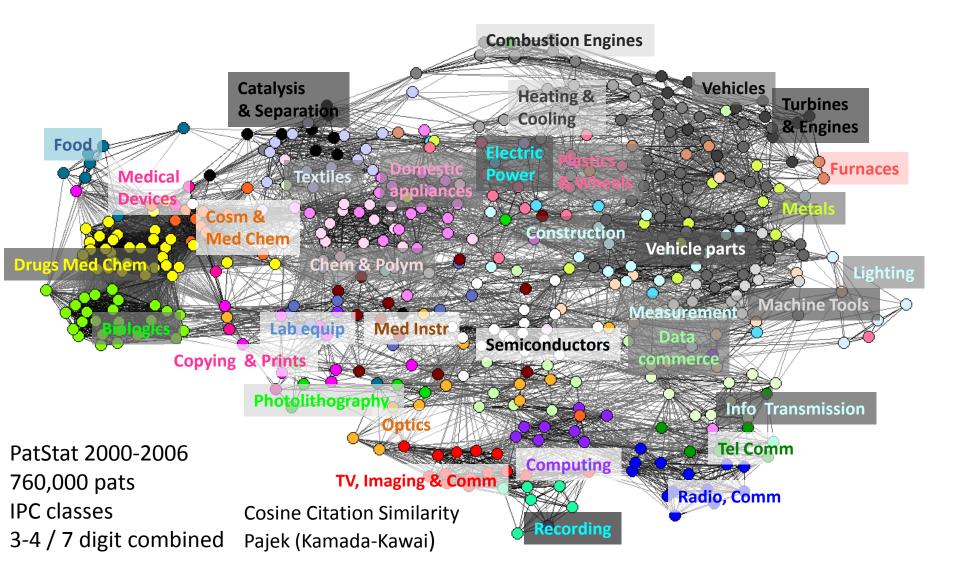
1. Disaggregate and fold IPC categories to create relatively similarly sized grouping 2. Use co-citation rather than patent class hierarchy as a proxy for technological similarity/distance

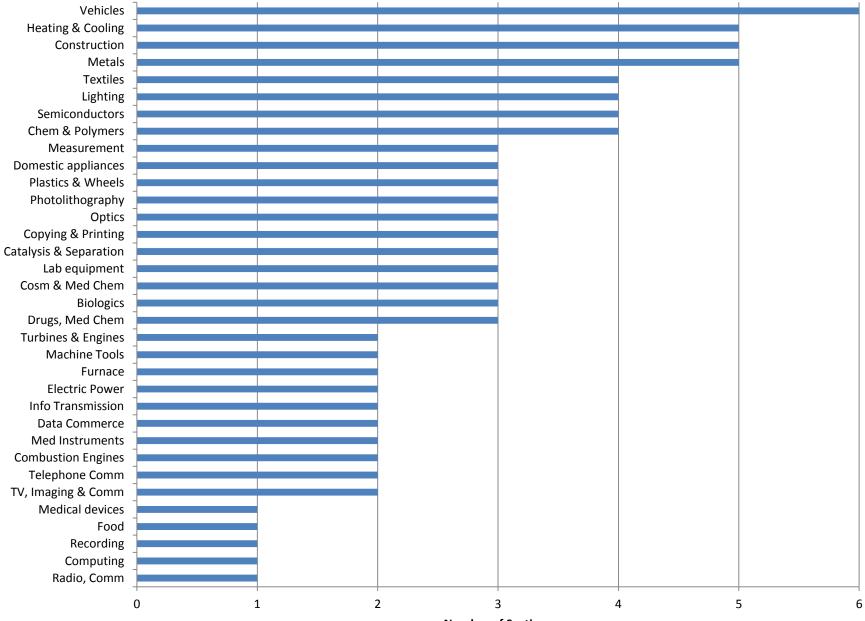
3. Create a patent overlay map to enable visualization of results

Step 1: Fold the IPC categories

- Pulled the EP Authority population of 760,000+ records (grants, drops, etc.), PatStat issued 2000-2006 (IPC 7)
- Each IPC with an instance count greater than 1,000 was kept in its original state
- Each IPC with an instance count less than 1,000 was folded up to the next highest level until the count exceeded 1,000 or the Class level was reached
- If at the Class level, the population was less than 1,000, the IPC code was dropped for being too small to map
- This resulted in 466 categories
- Converted IPC codes to text labels using a manual process based on the IPC definitions/catchwords

Data pre-processing to group IPC categories, selected examples

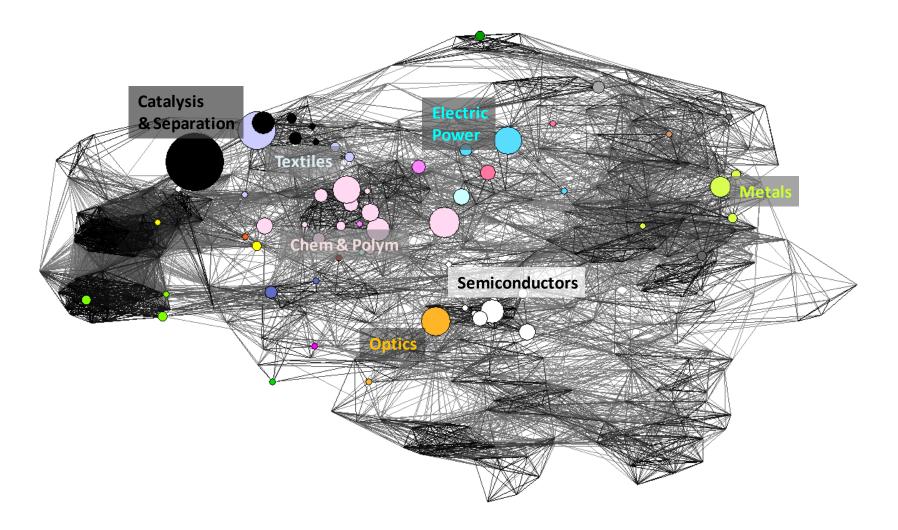

Original IPC in dataset	Catchwords	Original Record	
		Count	
A61B	Diagnosis; Surgery; Identification	25,808	
	plits this out into:		
A61B 5/00	Measuring for diagnostic purposes	1,415	
A61B 17/00	Surgical instruments, devices or	1,493	
	methods, e.g. tourniquets		
A61B 19/00	Instruments, implements or	1,444	
	accessories for surgery or diagnosis		
	not covered by any of the groups		
and a remainde			
A61B (e.g., A61B 7/00		21,456	
stethoscopes; A61B			
8/00 blood pressure)			


Each IPC with an instance count greater than 1,000 was kept in its original state. Each IPC with an instance count less than 1,000 was folded up to the next highest level until the count exceeded 1,000 or the class level was reached.

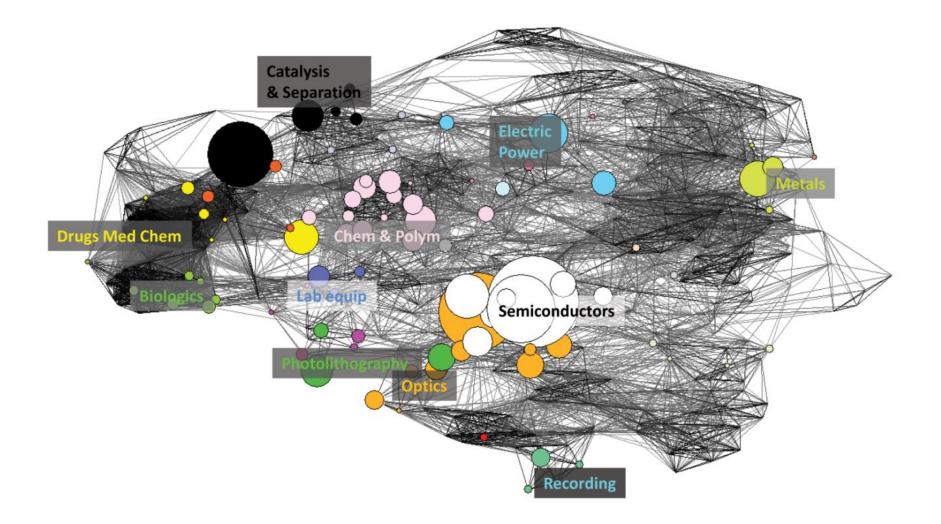
Step 2: Cosine similarity matrix

- Reduced the 466 categories into 35 "macro patent groupings" through factor analysis of the Cosine similarity matrix of cited to citing patents
 - Factors from 10 to 40 were tested
 - 35 factors appeared to have the greatest face validity
 - The 466 categories were color coded based on the factors
- Used the 466 category text labels to create a text label for each factor

Step 3: Patent Overlay Map (35 factors color coded)



Number of Sections


Factors

"Biologics": Category Label	IPC	Documents	
Agriculture	A01	45,126	Class
Animal husbandry	A01K	14,548	Sub-
Peptides, medical	A61K 38/00	482,120	Class
Antigens	A61K 39/00	20,010	
Antibodies	A61K 39/395	47,662	
Gene therapy	A61K 48/00	15,899	Main
Saccharides	C07H 21/00	14,578	Group
Peptides, compounds	С07К	58,219	
Peptides from humans	С07К 14/435	43,462	Sub-
Peptides from animals	С07К 14/47	14,602	Group
Immunoglobulins	С07К 16/18	27,481	
Extractions from organisms	C12N	26,627	
Modified fungi	C12N 1/15	47,884	
Modified yeasts	C12N 1/19	32,469	
Cellulose processes	C12N 1/21	13,631	
Virus transformed cells	C12N 5/10	10,402	
Recombinant DNA	C12N 15/09	21,345	
Genes encoding animal proteins	C12N 15/12	25,010	
Fermentation for food	С12Р	29,202	
Testing, microorganisms	C12Q	18,442	
Testing, nucleic acids	C12Q 1/68	22,731	
Bacteriology	C12R	48,984	
Measuring biological material	G01N 33/50	517,367	
Immunoassay	G01N 33/53	43,835	
Measuring using proteins, amino acids, lipids	G01N 33/68	119,957	

Graphene Overlay Map

Samsung Overlay Map

Observations

- Similarity of structure of our patent map to others (e.g., Klavans & Boyack, 2009; Rafols & Leydesdorff, 2009)
- More fine-grained categorizations and differentiation ability

Medical and Veterinary Medicine (3 digit IPC)

- (1) Drugs, Med. Chemistry,
- (2) Biologics,
- (3) Cosmetics and Med. Chemistry,
- (4) Medical Instruments,
- (5) Medical Devices
- IPC Hierarchy ≈ Co-citation Similarity
- Not as easy to use our structure (though thesaurus available at:

http://www.sussex.ac.uk/Users/ir28/patmap/KaySupplementary1.xls)

Thank you

Acknowledgement: US National Science Foundation (NSF) through the Center for Nanotechnology in Society (Arizona State University; Award No. 0531194) and NSF Award No. 1064146 to Georgia Tech ("Revealing Innovation Pathways: Hybrid Science Maps for Technology Assessment and Foresight"). Revisions were partially supported in collaboration with the Center for Nanotechnology in Society, University of California Santa Barbara (NSF Awards No. 0938099 and No. 0531184). The findings and observations contained in this paper are those of the authors and do not necessarily reflect the views of the US National Science Foundation.